

Adapting the SpaceCube v2.0 Data Processing System for Mission-Unique Application Requirements

2015 AHS Conference Montreal, Canada June 16, 2015

Dave Petrick Principal Engineer

SCIENCE DATA PROCESSING BRANCH Code 587 • NASA GSFC

SpaceCube, Target Applications

- Small, light-weight, reconfigurable multi-processor platform for space flight applications demanding extreme processing capabilities
 - Reconfigurable components: FPGA, Software, Mechanical
 - Promote reuse between applications
- Hybrid Flight Computing: hardware acceleration of algorithms to enable onboard data processing and increased mission capabilities
- Example Applications: Instrument Data Interfacing and On-Board Processing, Autonomous Operations, Situational Awareness, Scalable Computing Architectures

Hardware Algorithm Acceleration

Application	Xilinx Device	Acceleration vs CPU
SAR	Virtex-4	79x vs PowerPC 405
Altimeter	FX60	(250MHz, 300 MIPS)
RNS GNFIR	Virtex-4	25x vs PowerPC 405
FPU, Edge	FX60	(250MHz, 300 MIPS)
HHT	Virtex-1	3x vs Xeon Dual-Core
EMD, Spline	2000	(2.4GHz, 3000 MIPS)
Hyperspectral Data Compression	Virtex-1 1000	2x vs Xeon Dual-Core (2.4GHz, 3000 MIPS)
GOES-8 GndSys	Virtex-1	6x vs Xeon Dual-Core
Sun correction	300E	(2.4GHz, 3000 MIPS)

2

On-Board Data Reduction

Notes:

- All functions involve processing large data sets (1MB+)
- All timing includes moving data to/from FPGA 2)
- SpaceCube 2.0 is 4x to 20x more capable than these earlier systems

Commercial Processor Trend

SCIENCE DATA PROCESSING BRANCH • Code 587 • NASA GSFC

Space Processor Trend

SCIENCE DATA PROCESSING BRANCH • Code 587 • NASA GSFC

4

Processor Trend Comparison

SCIENCE DATA PROCESSING BRANCH • Code 587 • NASA GSFC

Processor Trend Comparison

6

Future Space Processing Requirement

SpaceCube Closes the Gap

SpaceCube Family Overview

Example SpaceCube Processing

Real-Time Image Tracking of Hubble

Fire Classification

Gigabit Instrument Interfacing

Xilinx ISS Radiation Data

Spectrometer Data Reduction

On-Board Image Processing

→ Successfully tracked Hubble position and orientation in real-time operations
 → FPGA Algorithm Acceleration was required to meet 3Hz loop requirement

Rendezvous

Deploy (Docking Ring)

 \rightarrow Typical space flight processors are 25-100x too slow for this application

SCIENCE DATA PROCESSING BRANCH • Code 587 • NASA GSFC

SpaceCube v2.0 Flight System

Power Card

- 22-38V Input, 7A limit
- 5V/80W, 3.3V/53W, +/-12V/24W

Processor Card

Backplane Card

- 4 slots
- Point-to-Point
- Gigabit SERDES
- 2 processors, 1 I/O
- 3 processors

Chassis: 12.7 x 23 x 27 cm^3

RANCH • Code 587 • NASA GSFC

Example Mission-Unique I/O Cards

Video/Spacecraft Interface Card

GPS RF Front-End Interface Card

LIDAR High Speed Digitizer

LIDAR Front-End Interface Card

SCIENCE DATA PROCESSING BRANCH • Code 587 • NASA GSFC

Processor Card

Power Draw: 10-15W

Weight: 0.98-lbs

22 Layers, Via-in-Pad

IPC 6012B Class 3/A

- 2x Xilinx Virtex-5 (QV) FX130T FPGAs
- 1x Aeroflex CCGA FPGA
 - Xilinx Configuration, Watchdog, Timers
 - Auxiliary Command/Telemetry port
- 1x 128Mb PROM, contains initial Xilinx configuration files
- 1x 16MB SRAM, rad-hard with auto EDAC/scrub feature
- 4x 512MB DDR SDRAM
- 2x 4GB NAND Flash
- 16-channel Analog/Digital circuit for system health
- Optional 10/100 Ethernet interface
- Gigabit interfaces: 4x external, 2x on backplane
- 12x Full-Duplex dedicated differential channels
- 88 GPIO/LVDS channels directly to Xilinx FPGAs
- Mechanical support for heat sink options and stiffener for Xilinx devices
 SCIENCE DATA PROCESSING BRANCH Code 587 NASA GSFC

Processor Diagram

STP-H4 Operational on ISS

Adapting the SpaceCube Platform

1) SpaceCube-based Lidar

- Goddard Reconfigurable Solid State Lidar (GRSSLi)

2) SpaceCube-based GPS

Based on NASA/GSFC Heritage "Navigator" Technology

3) ISS Robotic Avionics

- Robotic Refueling Mission 3 (RRM3)

LiDAR Application (GRSSLi)

- Imaging LiDAR based on MEMS Scanning Mirror
- What can it do?
 - High quality & high rate proximity operations range imaging
 - 6mm range resolution, <1cm noise 1σ , 5µs per pixel
 - Variable rate/ spatial resolution
 - 3Hz @ 256x256 pixels, 12Hz @128x128pixels
 - Variable field of view, +/- 20° max (currently)
 - Variable fiber laser to extend dynamic range
 - <0.5m to 50 meter range max with 2µJ laser
 - Science quality sub-millimeter range resolution scans
 - Demonstrated 380μm resolution, 480μm noise 1σ
 - Geophysical science
 - Model building and reconnaissance
 - Range finding
 - 182 meters demonstrated with 1 second average
- All capabilities listed <u>do not</u> require hardware modifications
 - Software configurable

3D image of person waving

Hires 3D model of computer keyboard from single GRSSLi "science mode" scan

SpaceCube-Based Lidar (GRSSLi)

GRSSLi System Integration

GRSSLi Sub-millimeter Scans

Science LiDAR Requirements

- Range resolution: < 0.001 m
- Max Range: 10m
- Pixel Scale
 - 1cm Spatial Resolution @1m range

Demonstrated Capability

- Range resolution: 0.000380 m
- Range noise: 0.00480 m 1σ
- Laser Divergence: 2 mRad
 - At 1m: 4mm spot dia
 - At 10m: 4cm spot dia

3D Scan of "FeSS" Sandstone clearly exhibiting biologically derived textures

Mars Rock in Gale Crater with < 1 cm thick layers GRSSLi could measure the 3D arrangement of layered materials to understand depositional environments and textures associated with biosignature preservation potential. *Curiosity MastCam mosaic (100mm images, NASA/JPL/MSSS)*

SpaceCube-Based GPS

Merges NASA GSFC SpaceCube avionics and "Navigator" technologies

NavCube with dual frequency RF card

Spirent GPS simulators

High Level GPS RF Card Diagram

23

High Level GPS Processor Card Diagram

SCIENCE DATA PROCESSING BRANCH • Code 587 • NASA GSFC

SpaceCube GPS Tracking Data

SCIENCE DATA PROCESSING BRANCH • Code 587 • NASA GSFC

MMS Mission On-Orbit Performance of GPS Navigator

Nsv: number of GPS satellites tracked

Radial pos: radial distance from center of Earch

Robotic Refueling Mission (RRM)

RRM Operations

RRM3 SpaceCube Preliminary Diagram

VIENCE DATA I NUCESSING DNANGH - COUT JUL - NAGA SOLU

SpaceCube on the ISS

Enabling Satellite Servicing

Questions?

SCIENCE DATA PROCESSING BRANCH • Code 587 • NASA GSFC