
 U.S. Government work not protected by U.S. copyright
 1

Adapting the Reconfigurable SpaceCube Processing
System for Multiple Mission Applications

David Petrick, Daniel Espinosa, Robin Ripley, Gary Crum, Alessandro Geist, and Thomas Flatley

NASA Goddard Space Flight
Greenbelt, MD 20771

david.j.petrick@nasa.gov

Abstract—This paper highlights the methodology and
effectiveness of adapting the reconfigurable SpaceCube system
to solve complex application requirements for a variety of
space flight missions. SpaceCube is a reconfigurable, modular,
compact, multi-processing platform for space flight
applications demanding extreme processing power. The
SpaceCube system is suitable for most mission applications,
particularly those that are computationally and data intensive
such as instrument science data processing. We will show how
the SpaceCube hybrid processing architecture is used to meet
data processing performance requirements that traditional
flight processors cannot meet.

This paper discusses the flexible computational architecture of
the SpaceCube system and its inherent advantages over other
avionics systems. The SpaceCube v1.0 processing system
features two commercial Xilinx Virtex-4 FX60 Field
Programmable Gate Arrays (FPGA), each with two embedded
PowerPC405 processors. The FPGAs are mounted in an
innovative back-to-back method, which reduces the size of the
circuit board design while maintaining the added benefit of
two FPGAs. All SpaceCube v1.0 cards are 4” x 4”, yielding a
small, yet powerful hybrid computing system. The
architecture exploits the Xilinx FPGAs, PowerPCs, and
necessary support peripherals to maximize system flexibility.
Adding to the flexibility, the entire system is modular. Each
card conforms to a custom mechanical standard that allows
stacking multiple cards in the same box.

This paper will detail the use of SpaceCube in multiple space
flight applications including the Hubble Space Telescope
Servicing Mission 4 (HST-SM4), an International Space
Station (ISS) radiation test bed experiment, and the main
avionics subsystem for two separate ISS attached payloads.
Each mission has had varying degrees of data processing
complexities, performance requirements, and external
interfaces. We will show the methodology used to minimize the
changes required to the physical hardware, FPGA designs,
embedded software interfaces, and testing.

This paper will summarize significant results as they apply to
each mission application. In the HST-SM4 application we
utilized the FPGA resources to accelerate portions of the image
processing algorithms more than 25 times faster than a
standard space processor in order to meet computational speed
requirements. For the ISS radiation on-orbit demonstration,
the main goal is to show that we can rely on the commercial
FPGAs and processors in a space environment. We describe
our FPGA and processor radiation mitigation strategies that
have resulted in our eight PowerPCs being available and error
free for more than 99.99% of the time over the period of four
years. This positive data and proven reliability of the
SpaceCube on ISS resulted in the Department of Defense
(DoD) selecting SpaceCube, which is replacing an older and

slower computer currently used on ISS, as the main avionics
for two upcoming ISS experiment campaigns. This paper will
show how we quickly reconfigured the SpaceCube system to
meet the more stringent reliability requirements.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. HYBRID FLIGHT COMPUTING 2
3. SPACECUBE V1.0 DESCRIPTION 2
4. MISSION USE CASES.. 6
5. CONCLUSIONS ... 17
6. FUTURE WORK ... 17
REFERENCES .. 17
BIOGRAPHY .. 18

1. INTRODUCTION

SpaceCube is a family of Field Programmable Gate Array
(FPGA) based on-board science data processing systems
developed at the NASA Goddard Space Flight Center
(GSFC) [1]. The goal of the SpaceCube program is to
provide 10x to 100x improvements in on-board computing
power while lowering relative power consumption and cost.
SpaceCube is based on the Xilinx Virtex family of FPGAs,
which include processor, FPGA and digital signal
processing (DSP) resources. These processing elements are
leveraged to produce a hybrid science data processing
platform that accelerates the execution of science data
processing algorithms by distributing computational
functions among the elements. This approach enables the
implementation of complex on-board functions that were
previously limited to ground based systems, such as on-
board product generation, data reduction, calibration,
classification, event/feature detection, data mining and real-
time autonomous operations. The system is fully
reconfigurable in flight, including data parameters, software
and FPGA configuration, through either ground
commanding file transfers or autonomously in response to
detected events/features in the instrument data stream.

Background

The SpaceCube processing system was started at GSFC in
2006 with Internal Research and Development (IRAD)
program funding [2]. A series of internal prototype
demonstrations to NASA officials showcased the

 2

computational power and its inherent reconfigurable
advantages over typical space processors. NASA
recognized the clear potential of the technology, and
provided the funding needed to increase the technology
readiness level (TRL) for space flight applications.
Specifically, the Hubble Space Telescope Servicing Mission
4 management team infused SpaceCube as the main
avionics for an experimental payload called Relative
Navigation Sensors (RNS) [3]. The use of SpaceCube
within the RNS system will be described in detail later in
this paper.

The version of the SpaceCube that was initially developed
in the 2006-2009 timeframe is known as SpaceCube v1.0.
Follow-on versions have been developed [1]; however the
design and use of SpaceCube v1.0 will be the focus of this
paper.

2. HYBRID FLIGHT COMPUTING
There is a growing need for higher performance processing
systems for space. Instrument precision and speed
capabilities are rapidly evolving which levies tougher
electrical interfacing and data bandwidth requirements on
the computing node of the system. In addition, on-board
processing of the data products, in some cases in real-time,
is now a common requirement.

On-board processing improves system efficiency and
functionality in two areas. First, by allowing the spacecraft
to preprocess data products on board, a smaller or
compressed data volume per data set can be sent to ground,
which increases the amount of time an instrument can be
turned on and collecting data. It is typical for high data rate
science instruments to constrain their data collection to 10-
20% of the mission time to fit within the limited downlink
bandwidth. This problem continues to grow as instrument
capabilities increase. Second, it enables for applications on
board the spacecraft to make autonomous decisions on the
processed data products. This ability opens up a much more
challenging range of mission objectives that can be targeted
for space applications.

Typical space processing systems generally consist of a
single radiation hardened processor such as the BAE
RAD750, Aeroflex LEON3FT, BroadReach BRE440, or
General Dynamics ColdFire which deliver less than 300
DMIPS. These standard processing systems are very good
at providing general services such as Command and Data
Handling (C&DH), Guidance and Navigation Control
(G&NC), and simple instrument control. These processing
systems are not good candidates for applications that require
implementing fast computations of complex algorithms on a
high bandwidth or large volume data source.

Another common component found in typical space
processing systems is the anti-fuse FPGA, which generally
have very good radiation immunity. The corresponding
circuit board and FPGA architectures are designed for a set
of very specific mission requirements. However, these

architectures are very hard to design and intrinsically
expensive to change such that they are portable to multiple
missions, dynamic functional requirements, or new post-
launch mission objectives or corrections.

A new approach is needed to meet the increasing challenges
required by space processing systems. A hybrid computing
system that combines multiple processors, reconfigurable
FPGAs, flexible interface options, with a modular
architecture is the solution that will bridge the gap between
today’s avionics requirements and yesterday’s typical stand-
alone sequential processing architecture. A hybrid
computing architecture is able to retain the function of a
multi-purpose computer that runs typical C&DH and
G&NC. However, in addition to these types of tasks, it has
the advantage of supporting computationally complex tasks
that require FPGA co-processors to handle math such as
FFT, matrix manipulation, parallel floating point operations,
or implementing an advanced interface such as CameraLink,
Spacewire, gigabit Ethernet, or support the implementation
of a custom interface.

The modularity of such a system allows for the quick
adaptation to changing avionics requirements. A modular
system, for example, can support adding a bulk memory
card, a custom electrical interface, or expand the I/O
bandwidth required. A modular and reconfigurable system
yields a high probability of using the same basic avionics
package for different mission applications, or follow-on
missions, even if interface and computing requirements are
drastically different.

SpaceCube fits the need of a hybrid, reconfigurable,
modular space processing system. This paper will show
how cost and schedule can be reduced by reusing the same
basic system for new missions. Reuse of hardware
architecture greatly reduces the amount of up front Non
Recurring Engineering (NRE) costs and time associated
with building a new system with new requirements from the
ground up.

3. SPACECUBE V1.0 DESCRIPTION
The SpaceCube v1.0 system is a compact, modular, low
power, reconfigurable multiprocessing platform for space
flight applications demanding extreme computational
capabilities and/or high data rate/volume interfaces. The
SpaceCube v1.0 processing system is based on the Xilinx
Virtex-4 FX60 FPGA that includes two embedded hard IP
PowerPC405 processors.

This specific FPGA was the subject of radiation testing and
characterization by many groups including, but not limited
to the Xilinx Radiation Test Consortium and the GSFC
Radiation Effects and Analysis Group [10-16]. The
SpaceCube design leverages this work to properly mitigate
radiation effects within the system, as will be discussed later
in this paper.

 3

A. Modular Stacking Architecture

The SpaceCube v1.0 mechanical design uses a custom
stacking architecture. The system is comprised of various
slices that are stacked together using a 122-pin connector
from IEH Corporation [7]. The system uses a dual-
redundant I2C bus for low data rate transfers between all
cards in the stack. Each card is given a unique address on
the bus. The base system requires a power slice and a
processor slice. This architecture allows for adding mission
unique cards, if necessary. Four rods are used to hold the
box together once all slices have been mated together.
Figure 1 depicts the SpaceCube v1.0 modular architecture.
This version of the system required five slices (2 power, 2
processor, 1 I/O). Figure 2 shows the picture of the flight
box that corresponds to the model in Figure 1. This
configuration of the system is 7.5-lbs. and is 5-in x 5-in x 7-
in in size [9].

Figure 1 - SpaceCube v1.0 Modular Slice Architecture

Figure 2 - SpaceCube v1.0 Flight System

Each circuit board within the system is 4-in. x 4-in in size.
A mechanical tray holds the card in place and allows the
stacking connector to protrude through the bottom of the
slice. The card edges are bolted down to its respective slice
enclosure. In addition to the structural mount, the card edge
is also the thermal interface for each card. Figure 3 shows
the flight processor card slice enclosure.

Figure 3 - Slice Enclosure of Processor Card

B. Power Slice Design

The power slice consists of two circuit boards. The Low
Voltage Power Card (LVPC) has the typical EMI filter and
DC/DC components found in space flight power supplies.
The LVPC will accept 28V +/- 8V and provide 5.0V, 3.3V,
2.5V, 1.5V, and +/- 12V to the stacking connector. On
power-up, 2.5V, 3.3V, and 5.0V are automatically turned on
to support the main controller circuitry on the processor
card. The LVPC supports switched services for 1.5V, 2.5V,
3.3V and +/-12V. The main controller on the processor card
switches on these services by commands to support the
Xilinx FPGAs. The processor card has a custom point-of-
load circuit that regulates the 1.2V required for the core
voltage of the Xilinx devices.

Figure 4 – Power Slice Assembly of DCC and LVPC

The second card in the power slice is the Digital Control
Card (DCC). The DCC supports various functions
including collecting local voltage and temperature data,
SpaceCube 10BASE-T Ethernet and 1553 interfaces,
controlling processor reset and power loss warning signals,
and switching load services on the LVPC. An Aeroflex
FPGA is used to control these functions and to
communicate with the processor card via the I2C bus.

The LVPC and DCC cards are stacked together inside of
one enclosure slice. The LVPC assembly requires a heat
sink to handle the power loss within the DC/DC bricks.
Figure 4 shows the assembly of the power slice. On the left,
the DCC sits at the bottom of the enclosure. Two side rails

 4

are installed above the DCC which are seen along the edges
of the chassis. Next, the LVPC is mated to the DCC board
and bolted to the side rails. The LVPC is shown on the right
with the heat sink installed to its circuit card assembly.

C. Processor Card Design

The processor card features two Xilinx Virtex-4 FX60
devices in a back-to-back fashion. Figure 5 shows that the
processor board fully utilizes both sides of the circuit board.
Each Xilinx FPGA has two embedded PowerPC405, each
capable of 750+ DMIPS. This results in four processors per
card yielding a total processing capacity of 3000
DMIPS/card in addition to the 113,760 logic cells, 256 DSP
slices, and 8,352 Kb of Block RAM resources [24].

The card features a good balance of peripherals to support
the Xilinx FPGAs and processors given the limited board
space. Peripherals include four 256MB Synchronous
Dynamic Random Access Memory (SDRAM) modules, two
redundant 512MB NAND flash modules, 20 configurable

full duplex LVDS/RS422 interface modules, 42 stacking
connector I/O, and required clock and power circuitry. The
front panel I/O connectors are configurable as required by
each application. Figure 6 shows a high level component
diagram of the processor card design.

Figure 5 - Processor Card, Top and Bottom Sides

Figure 6 - High Level Block Diagram of Processor Card

Aeroflex Service Design—Two back-to-back Aeroflex
FPGAs control the power sequencing of the switched power
rails via I2C commands, reset control, watchdog timers,
mission elapsed timer, scratch-pad ram, Xilinx
configuration, non-volatile storage access, and monitor
health and status. To provide all of these services as well as
facilitate reconfiguration and reuse of the one-time-
programmable (OTP) Aeroflex FPGA an embedded 8-bit
soft-core microcontroller (SpaceRISC) was designed and
used as an alternative to using a complex state machine.
This design decision has proven useful in not only
enhancing the services provided but also allowed for debug
and test code to be loaded into the OTP FPGA to better
facilitate initial board testing as well as system integration
and test activities.

The SpaceRISC is based on a standard commercial device
that can only address 16KB of the 32KB SRAM. We turned
this limitation into a benefit by developing a memory

controller that could conditionally operate out of the top or
bottom half of the memory while simultaneously providing
a side channel for read/write access to the ‘inactive’ portion
of ram. This facilitates a complete reconfiguration of the
microcontroller while the current flight application is still
running. The first stage boot loader (FSB) for the
SpaceRISC is stored in an onboard radiation hardened
16KB PROM. The SpaceRISC cannot execute code directly
out of the PROM so a hardware boot-loader IP core was
created to copy data from the PROM to the external SRAM
before bringing the SpaceRISC out of reset. The
SpaceRISC FSB will then search for the latest Run-Time
Application (RT-App) to load and execute. The RT-App is
stored in a Quad-Triple Module Redundant manner; should
the FSB not successfully load the RT-App it will fall back
to the previous version. The RT-App is fully capable of
performing this boot loader sequence from ground
commands or alternative configuration files which allows

 5

multiple variants of the RT-App to be stored in flash while
still preserving the ‘Gold’ boot configuration.

As the RT-App starts to execute it will first check to see if
the startup was due to a watchdog timer reset or a clean
power up. In the event of a watchdog timeout (WDT) the
RT-App will check the configuration table for a set of flags
to determine the next course of action. The current flight
configuration allows for a programmable threshold of WDT
and reverts to the ‘Gold’ application code should it exceed
the threshold. After a nominal proceed condition is met the
RT-App needs to enable the Xilinx FPGA’s by turning on
the switched power rails and configuring the FPGA. The
bitstreams used for configuration are determined by a
configuration file that is stored in flash.

PROM Stores SpaceRISC FSB

Aeroflex HW Copies FSB
To Bottom SRAM

SpaceRISC FSB
Load Latest Flight Application from Quad-TMR Flash To

‘inactive’ SRAM – fallback if required

Flight Application
Configuration of Top/Bottom FPGAs

PPC0 FSB
Loads U-Boot

PPC1 FSB
Loads U-Boot

PPC2 FSB
Loads U-Boot

PPPC3 FSB
Loads U-Boot

PPC0 U-Boot
Requests

Boot Script

PPC1 U-Boot
Requests

Boot Script

PPC2 U-Boot
Requests

Boot Script

PPC3 U-Boot
Requests

Boot Script

PPC0 U-Boot
Executes

Script

PPC1 U-Boot
Executes

Script

PPC2 U-Boot
Executes

Script

PPC3 U-Boot
Executes

Script

PPC0
Flight OS /

App Running

PPC1
Flight OS /

App Running

PPC2
Flight OS /

App Running

PPC3
Flight OS /

App Running

Read/Write
Flash Requests
between PPCs
and SpaceRISC
via High Speed

Serial Ports

SpaceRISC RT App
Load/Check Runtime Configuration from Quad-TMR Flash

SpaceRISC RT App
Sequences Switched Rails and enables Xilinx FPGAs

Figure 7 - Simplified Processor Boot Sequence

The RT-App then brings the PowerPC (PPC) processors out
of reset and the PPCs start to execute their First Stage
Bootloaders (PPC FSB). The PPC FSB will then request
the second stage bootloader from the SpaceRISC; we have
chosen to use UBoot as our second stage bootloader. UBoot
will then request a boot script from the SpaceRISC that
contains commands and the file addresses required to load
the flight operating system and applications. The files are
read from the SpaceRISC with a series of ‘get file info’
commands and ‘flash read requests’. The ‘get file info’
commands take in a file ID that is translated to a flash
address by the SpaceRISC. The SpaceRISC then reads the
file headers and send it back to the PPC. This header
contains information about the file address in flash, data
CRC length and if the image is mirrored across multiple
devices. The PPC and SpaceRISC then perform a series of

flash read request and response packets until all of the data
is transmitted and UBoot can load the OS/Application. The
simplified boot sequence is shown in Figure 7.

Flash File Mitigation—NAND Flash technology is known
to be susceptible to radiation Single Event Effects (SEE)
including Single Event Upsets (SEU) and Single Event
Function Interrupts (SEFI). Each processor card flash
module is composed of four independent dies inside. The
SpaceRISC NAND Flash Controller has the capability of
performing mirrored read and write operations, which store
the same file in one or more die. In addition, software in the
SpaceRISC has the capability of adding Triple Modular
Redundant (TMR) duplication of each file within each die.
For the most mission critical data such, as the SpaceRISC
configuration tables and software, we utilized Quad-
redundant with byte level TMR (QTMR). As the
SpaceRISC reads a file it will read in three bytes at a time
and perform a series of bit-wise AND/OR operations on the
data set (1). The output of this operation is then byte-wise
ANDed to the input data set (2). To mitigate the possibility
of two bit flips in the same bit position resulting in a false
positive output, the voted results are compared to the input
values and if any of the values do not match the voted
output the system moves onto the next mirrored copy of the
file at the current file offset. In the event that all copies
indicate some kind of error we will use the voted output
from the last test. This coupled with four checksums per
page and checksums on all files helps to detect multiple bit
flips in the NAND Flash before they are used by the system.

 TMR_RESULT = (d0 & d1) | (d0 & d2) | (d1 & d2) (1)

 TMR_ERROR_n = (TMR_RESULT && d0) ||
 (TMR_RESULT && d1) || (TMR_RESULT && d2) (2)

Due to that fact that QTMR is partially implemented in
software it would require extending the boot time to utilize
this method for larger files such as those for Xilinx
bitstreams and the PowerPC OS and ramdisks. To minimize
our boot time and thus increase our availability larger
images are store in a Quad Mirrored fashion with DMA read
and transmit assist. When a flash read request if received by
the SpaceRISC the request is validated and a NACK packet
is sent in response if any errors are detected otherwise the
SpaceRISC will setup a flash read response and transmit the
packet header information, the hardware in the Aeroflex
FPGA will read data from the flash and place it directly into
the transmit buffer while also calculating the data checksum
which will be added to the header checksum to allow for
general validation of the response packet. The data
transmitted also include the Out Of Bounds area of the
NAND flash that is used to store error correcting codes for
the NAND Flash page. Software in the PowerPC will then
check that the page is valid or request a new page from the
next mirrored copy.

Xilinx Configuration Scrubbing—The task of monitoring
the programmable configuration bits within the Xilinx
FPGA is typically handled by an outside controller. The

 6

Aeroflex FPGA designs and processing load on the
SpaceRISC were considered to be at full capacity. The
SpaceCube v1.0 Xilinx FPGAs contain an internal TMR
self configuration scrubber that utilizes the ICAP and
FRAME_ECC [12]. The Aeroflex FPGA is responsible for
enabling this service. The scrubber core reports status to the
Aeroflex FPGAs that it is actively scrubbing, if it has
detected and corrected an SEU, or if it has found an
uncorrectable error as a result of a Multiple Bit Upset.

D. FPGA Design and Software Design Methodology

FPGA development for the SpaceCube Xilinx FPGAs
requires the standard Xilinx tool chains (ISE, EDK). We
have developed a baseline FPGA design that includes the
necessary framework for an embedded system using the
PowerPCs on the SpaceCube. This baseline system is given
to developers as a starting point for porting a new
application to the SpaceCube environment. Similar FPGA
designs have also been developed for the ML403 and
ML410 Xilinx development boards. This allows for a
cheaper development cycle for application engineers prior to
targeting the SpaceCube system.

The PowerPCs within the Xilinx FPGAs on the SpaceCube
currently support standalone code, Linux, VxWorks, and
RTEMs operating systems (OS). The SpaceCube software
team has modified an existing Linux OS and fine-tuned it to
support the SpaceCube build environment (SpaceCube
Linux).

The SpaceCube system is easy for application engineers to
target and allows for a fast development cycle. We have
supported more than 10 projects inside and outside of GSFC
using this development approach. All cases have resulted in
a seamless application port to the SpaceCube hardware
system.

4. MISSION USE CASES
This section will present four examples of how the
SpaceCube v1.0 system was adapted to support different
missions. For each mission, we will describe the mission
and its objectives, the corresponding SpaceCube hardware
requirements and changes, FPGA and application
descriptions, integration and testing, operations, and an
assessment on overall development effort.

A. Relative Navigation Sensors

On May 11, 2009, STS-125 Space Shuttle Atlantis, lifted off
from Kennedy Space Center (KSC) with new instruments,
gyroscopes, and flight computers for the Hubble Space
Telescope. The HST Servicing Mission 4 (SM4) saw
almost 37 hours of astronaut Extra-Vehicular Activity
(EVA) time to install the instruments and hardware, and
overcome many obstacles in servicing the observatory.
Along for the ride on this mission, installed in the back of
the shuttle payload bay on the Multi-Use Logistics
Equipment (MULE) carrier, was a technology flight

experiment called the Relative Navigation Sensors (RNS)
system [1, 3, 4, 6, 9].

The RNS system, which was a driving technology
requirement for the HST Robotic Servicing and De-orbit
Mission (HRSDM), consists of three cameras, a GPS
module, two redundant Mass Storage Modules (MSM) that
each contains four hard drives, a Telemetry Module (TM), a
SpaceCube v1.0 system as the payload’s central avionics
and a dual redundant ground terminal. The two main
objectives of RNS were to record imagery of HST during
rendezvous and deploy operations, and also to demonstrate
the capability of providing real-time tracking and position
estimation on HST with the SpaceCube processing system.
The RNS flight hardware is pictured in Figure 8.

Figure 8 - RNS Payload Installed on MULE Carrier

RNS SpaceCube System—The RNS SpaceCube consisted of
two SpaceCube processor cards (SCuP), two power slices,
and a custom card called the Video Interface Module
(VIM). Processor card 1 hosted two different position
estimation and image tracking algorithms, the Goddard Near
Feature Image Recognition (GNFIR) and Ultra Lethal
Targeting by Optical Recognition (ULTOR). Processor
card 2 handled multiple tasks including GPS, MSM, TM,
Automatic Gain Control (AGC), C&DH and shuttle KU-
band in a single Xilinx.

Figure 9 - RNS SpaceCube Diagram

 7

The VIM was responsible for compressing images. The
compressed images were stored during critical operations
and sent to ground operators via the processor card 2 shuttle
KU link. This SpaceCube, pictured in Figure 2 prior to
RNS payload integration, was approximately 5-in. x 5-in. x
7-in. in size and required a nominal power of 37W (7-8W
per processor card). A high level SpaceCube diagram is
shown in Figure 9.

FPGA Design—Three of the four Xilinx FPGAs in the
SpaceCube were 60-70% utilized. The fourth FPGA was
for design contingency, but was never needed and remained
unprogrammed. Two FPGA designs used one PowerPC and
the ULTOR application FPGA design used both PowerPCs.
The FPGA designs consisted of the required embedded
system peripherals, internal card-to-card infrastructure, RNS
interface peripherals such as the custom camera core, an
internal triplicated self scrubbing configuration module, and
hardware acceleration co-processing cores.

A major part of the RNS experiment on HST-SM4 was the
GNFIR pose estimation application. One of the two Xilinx
FPGAs in the processor card 1 hosted the GNFIR
application. In order to meet real-time processing
requirements, the GNFIR system had to operate at 3 Hz.
Initially, GNFIR was developed exclusively in software and
run on the embedded PowerPC405 processor in the Xilinx.
However, the performance using the processor alone was
insufficient and GNFIR could only operate at 0.125Hz. In
order to improve the application performance, the Floating
Point Unit (FPU) FPGA IP core was added to the PowerPC,
which resulted in a 4x speedup to 0.5Hz. We developed the
custom Edge core in FPGA to accelerate some of the more
compute intensive operations in GNFIR that resulted in an
additional 6x speedup that enabled the application to operate
at the required 3Hz [4]. The Edge core provides an FPGA
implementation of the edge detection, gradient direction
computations, and centroid computation on the camera
image data. The edge detection is performed using a Sobel
operator and computes the gradient vector at each image
pixel by performing a convolution of two 3x3 filter kernels
in the horizontal and vertical dimensions with the image.
The gradient magnitude is then computed, and the edge data
is scaled by a factor selected via a command register. The
gradient direction is calculated using a CORDIC arctangent
module. The centroid of each input image was also
computed. Each pixel of the input image that is above the
threshold in intensity is considered a significant pixel, and
the centroid is the average coordinate location of all the
significant pixels in the image. The desired threshold value
was configurable through a command register by the
software driver. The edge core processing engine is fully
pipelined and can produce an edge/angle pair at the same
rate as the camera data pixels are supplied to it. This data
was buffered in a read FIFO in the FPGA core that was
connected to the PowerPC’s Processor Local Bus (PLB).
This allowed the processor to transfer the data to memory at
a high rate using Direct Memory Access (DMA). The
reconfigurable nature of the radiation tolerant Xilinx FPGAs

in the SpaceCube v1.0 allowed the new Edge core to be
developed, integrated, and tested in a matter of months.

Figure 10 shows the high-level diagram of the embedded
system design used to implement the GNFIR application.
GNFIR ran under the SpaceCube Linux OS.

Figure 10 - GNFIR FPGA High-Level Design Example

The ULTOR application FPGA was proprietary, designed
by Advanced Optical Systems. The ULTOR and GNFIR
applications continuously exchanged HST position estimate
data. This was implemented to help speed up the process of
acquiring and locking onto the image in order to enter
tracking mode. The ULTOR application PowerPC ran
under the VxWorks OS [4].

The C&DH FPGA design included an AGC algorithm with
supporting FPGA core to dynamically adjust the camera
brightness of the image as lighting conditions changed. A
custom interface core was necessary to extract streaming
data from the GPS receiver. The C&DH design also
included a Floating-Point Unit (FPU) core, UARTs for
communication with the MSMs and TM, and a KU core to
stream continuous data to the shuttle’s KU transponder
system. The C&DH PowerPC ran under the SpaceCube
Linux OS.

RNS Testing—Preparing the RNS payload for flight was a
considerable task due to the number of instruments,
interfaces, and configurable operation modes, along with the
challenge of obtaining high confidence that the system
would track a school bus sized satellite in the space
environment. This involved a series of test campaigns at
four NASA centers. Three trips with were made to the
Flight Robotics Laboratory (FRL) at the Marshall Space
Flight Center (MSFC). Testing at MSFC involved a full
RNS engineering-level system and a full-scale aft bulkhead
and a tenth-scale mockup of HST. Full system integration
and operation capabilities including image recording,
position estimation and tracking, and AGC were
incrementally tested during subsequent trips. As issues
arose during testing at the FRL, full advantage was taken of
the SpaceCube’s reconfigurability to fix problems quickly.
The command and telemetry capability and KU downlink
were tested at Houston’s Johnson Space Center (JSC).
Numerous tests at JSC included shuttle interface testing,

 8

ground terminal verification, and mission operations
simulations with the entire shuttle ops team. All typical
payload integration and environmental testing of the flight
system was conducted at GSFC. The most notable test at
GSFC took place prior to delivery to Cape Canaveral. With
the RNS flight payload integrated onto the MULE carrier, a
crane was used to maneuver the full-scale HST bulkhead to
test the close proximity rendezvous and deploy sequences
(Figure 11).

Figure 11 - RNS Flight Payload Testing at GSFC

Final testing and shuttle integration took place at KSC.
Two final software updates to the SpaceCube were
conducted that fixed minor bugs that were found during
ongoing testing at GSFC on the RNS engineering
development units. To support all of the different tests, two
SpaceCube EDUs in addition to the SpaceCube flight box
were built for the project. The reconfigurability of the
SpaceCube FPGAs and software were absolutely necessary
in addressing the many issues that arose during application
development, interface integration, and operation sequence
testing. RNS would have missed schedule deadlines if the
avionics did not have the ability to quickly adapt to required
changes. However, after environmental testing, the FPGA
designs were locked down.

Operations—Payload operations were conducted by the
RNS team from the Payload Operations Control Center
within Houston’s Mission Control facility. RNS was
successful in achieving all of its on-orbit objectives. The
GNFIR position and attitude estimation algorithm
successfully tracked HST for 21 minutes during rendezvous
using the long range camera between ranges of 50 to 100
meters, and also tracked HST during deploy for 16 minutes
using the short range camera at a 2 to 3 meter range [4].
RNS recorded a total of 6+ hours of HST imagery (~750GB
data) during rendezvous and deploy. GNFIR feature
tracking during rendezvous and deploy are shown in Figure
12.

Figure 13 shows a split screen of an image of HST during
rendezvous from the long range camera and the real-time
GNFIR solution computed on the SpaceCube at that given
time.

Figure 12 - Real-Time GNFIR Feature Tracking of HST

Figure 13 - GNFIR Estimation Overlay of HST Location

RNS also recovered 100,000+ compressed images over the
course of the mission using the video compression
capability in the SpaceCube. An example of a compressed
image that was downloaded during mission operations is
shown in Figure 14.

Figure 14 - Compressed Image from HST Release

 9

The RNS system infrastructure did not allow for on-orbit
FPGA reconfiguration of the SpaceCube, but did allow for
software parameters to be updated in the processor card’s
flash. The AGC parameters in flash were successfully
updated to tune the algorithm for the deploy operations. In
total, SpaceCube was powered for 60 hours during this
mission. Two SEUs were detected and successfully
repaired by the scrubber. During a routine KU image
downlink, the C&DH PowerPC experienced an SEE, at
which point it stopped functioning. The PowerPC
WatchDog Timer in the Aeroflex FPGA successfully
detected that the heartbeat had stopped and reprogrammed
the FPGA, at which point the KU data dump was resumed.

Development Effort—The manpower and schedule to
deliver the RNS flight box is significantly greater than
subsequent missions using the v1.0 system. This
development cycle accounted for all of the NRE required
when building a new hardware system with supporting
FPGA and software. This includes all electrical engineering
design, mechanical design, thermal design, radiation and
parts engineering, systems design, anti-fuse FPGA design,
Xilinx framework core development (PowerPC, SDRAM,
scrubber, etc.), and software development for the
SpaceRISC and PowerPCs. This phase of the development
took two years and required the equivalent of approximately
20 people/year, or 40 man-years. Next, implementing RNS
specific applications involved PowerPC software
development, Xilinx FPGA core development, intra-box
infrastructure testing, independent box verification,
environmental testing, and post-delivery support. The RNS
implementation phase for SpaceCube was a simultaneous
effort that lasted three years and required the equivalent of
approximately 10 people/year, or 30 man-years.

B. MISSE-7

A SpaceCube system was launched to the ISS in November
2009 as part of the Materials International Space Station
Experiment 7 (MISSE-7) [16, 22]. MISSE-7 is installed on
the ISS Express Logistics Carrier (ELC), specifically ELC-
2. The main objectives of the MISSE-7 SpaceCube was to
(1) demonstrate reliable use of the commercial devices, in
this case Xilinx FPGAs and embedded PowerPCs, for a long
duration in the space environment, (2) demonstrate
continuous and reliable execution of computation-intensive
science data applications utilizing SpaceCube’s Radiation
Hardened by Software (RHBS) technology, (3) demonstrate
the ability to reconfigure the FPGA and software with new
design files sent from ground.

MISSE-7 SpaceCube System—The flight spare hardware
from RNS was used to develop this payload. The MISSE-7
payload transmits and receives telemetry and commands to
ISS through the Communication Interface Box (CIB) over a
RS485 bus with individual experiment hardware enables.
Two processor/power slice pairs were configured as
independent experiments with separate command and
telemetry interfaces. A new MISSE-7 interface slice was
required within the SpaceCube modular stack to fulfill all

hardware requirements and to support the two independent
SpaceCube experiments. The flight box that was delivered
was the same physical size as RNS, but only required 28W
of power (14W per processor/power slice pair). A high
level diagram of MISSE-7 is shown in Figure 15.

Figure 15 - MISSE-7 System Diagram

FPGA/Software Applications—There is significant re-use of
the FPGA and software design from the RNS mission. The
initial FPGA design contained framework cores from RNS
along with new cores specific to the MISSE-7 experiment.
We tested preliminary versions of our RHBS
methodologies. One methodology involves running
identical applications in two PowerPC in separate FPGAs.
Mirrored C&DH applications on both FPGAs coordinate
through the SpaceRISC to execute incoming commands and
respond to telemetry requests. Each C&DH app receives
and processes incoming commands and requests for
telemetry from the CIB and then transmits the parameters to
the SpaceRISC. Once the SpaceRISC receives a set of
parameters from one C&DH app it sets a timer to wait for
parameters from the second C&DH app. The SpaceRISC
validates the received parameters. If valid parameters were
received from both C&DH apps it grants one of the
applications the right to process the parameters based on a
round robin approach. If only one valid set of parameters
were received in the timeout window it grants the right to
process to the app with the valid parameters. If none of the
parameters are valid then no rights to execution are given.

This RHBS technique allows the C&DH system to generate
telemetry and process command free from error. This also
allows the system to operate when one FPGA is down.

Along with the C&DH app, the RHBS demonstration
experiment continuously runs a Lunar Lander task using
data stored in SDRAM. The Lunar Lander application
performs part of the calculations needed for an
autonomously controlled vehicle to safely land on the
surface of the moon avoiding unsafe terrain at the landing
area. The results are sent to the SpaceRISC inside of the
Aeroflex. The SpaceRISC software, which had to be
modified to support MISSE-7, allows for timing windows
that each processor has to send incremental results.
Different modes are supported for rolling back a processor
task if it fails to send data or if the processors become out of
sync. The SpaceRISC also has the ability to completely

 10

ignore a processor string. A high-level diagram of how the
FPGA embedded system is configured is shown in Figure
16 [5].

Figure 16 - MISSE-7 SpaceCube Processor Design

New FPGA cores were developed to support the MISSE-7
experiment. The hardware acceleration Sobel Edge core
from RNS was slightly modified to support the Lander
application. The CIB UART core was designed to handle
all CIB communication and significantly assist software in
robust packet handling. The spare PowerPCs in each FPGA
were utilized to run continuous tasks. An identical task was
run in a MicroBlaze processor. Each processing string had
command and telemetry capability to the main C&DH
application running in the primary PowerPC. Both of these
secondary processing systems were clocked by separate
redundant DCM structures. Each redundant DCM consists
of two DCMs that periodically (apprx. 1 minute) switch
control of driving the clock net. Additional logic is in place
to detect a DCM string failure, switch over to the redundant
DCM, and reset the failed DCM string. A block diagram of
the FPGA designs is shown in Figure 17.

Figure 17 - MISSE-7 Xilinx Embedded System Design

The radiation-tolerant SDRAM memory modules on the
processor card are still prone to SEUs, and can require
additional Error Detection and Correction (EDAC)
techniques depending on the radiation environment of the
mission. The MISSE-7 experiment provided an opportunity
to test memory EDAC on the SpaceCube v1.0 system.
Several SDRAM schemes were evaluated and eventually the
(16,8) quasi-cyclic (QC) code described in [21] was chosen
for the flight FPGA. The (16,8) code corrects all double
errors and can detect all triple-adjacent errors in the data.
The EDAC technique was incorporated into a standard
SDRAM memory controller IP core. The encoding and
decoding logic was added to the combinatorial logic path of
the data in the memory controller, so that it would not
require additional clock cycles. The additional logic delay
is sufficiently small that it does not reduce the data rate of
the SDRAM. In the SpaceCube v1.0, there are two 16-bit
wide, 256MB SDRAM modules attached to each Xilinx
FPGA. For the MISSE-7 experiment, the pair of modules
was combined to form a single 32-bit wide interface and the
(16,8) scheme was employed in each device. This yields an
effective data width of 16-bits with the remaining bits
devoted to the parity bits. One limitation of the memory
controller is that it only detects and corrects errors at a
memory address when it is accessed.

It corrects the data before it is presented to the PLB, but
does not automatically write the corrected value back to
memory. This means that over a long duration, multiple
upsets could accumulate. However, when an error is
detected in the data, an interrupt is sent to the PowerPC and
the memory controller fills a FIFO with the memory address
where the corrupted data is. This allows the processor to
scrub the memory during idle periods by performing a read
operation at the addresses buffered in the FIFO and then
writing the data back.

FPGA and Software On-Orbit Reprogamability—Another
driving requirement was to support the ability of ground
operators to upload new FPGA configuration files,
PowerPC software and SpaceRISC software files, then
execute a command sequence to reprogram the system. Due
to the extremely low communication bandwidth capability
to MISSE-7 and the polling schedule of the CIB, this is an
extremely tedious and time-intensive process. All files are
first compressed on the ground using the GZIP utility.

New software and FPGA configuration files are uplinked to
the SpaceCube using ground commands that write the new
files to the SpaceCube’s onboard Flash memory in 512 byte
chunks. A flash write of 512 bytes is comprised of a series
of six ground commands. The SpaceCube C&DH app strips
out and buffers the data in each of the six commands in
SDRAM, using a CRC in the sixth command of the series to
validate the 512 byte chunk of data. Once the CRC is
validated, it sends a Flash write command to the SpaceRISC
containing the chuck of data. It then performs an automatic
Flash read command and sends the data to ground in the
next telemetry packet so that it can be verified that the flash

 11

write executed properly. If one of the six commands is
received out of order, the C&DH resets its buffer, reports
the error in telemetry and waits for a new series of packets
to arrive.

Due to the hundreds to thousands of commands needed to
uplink new configuration files, an automatic command
generation feature was built into the MISSE-7 ground
software application. The ISS Experiment Control Center
(IECC) was developed in house at GSFC and is based on
the GSFC Instrument remote control framework [8]. To
uplink a file to the SpaceCube the IECC user provides a file
name, a SpaceCube flash address, and a file offset if the user
is in the middle of a file uplink.

The IECC parses the file, calculating the size of the file and
the number of packets needed to transfer the file. It then
generates a flash block erase command to clear the flash
location that will be written to. The IECC then starts
generating the six command series needed to uplink one 512
chunk at a time. The IECC only transmits the next
command in the series once it receives telemetry that the
last was received and validated by the C&DH app. It will
automatically retransmit packets to account for dropped
packets and Loss of Signal to ISS. When the series of six
packets completes, it waits for, then validates against the
readback telemetry of the 512 chunk. If the readback is
invalid it will log the issue and pause the process for
debugging by the user. If the readback is valid it generates
the next series of six commands. It continuous this process
until the whole file is uplinked.

Once the support files and new compressed configuration
and/or software files are uplinked, the user executes a series
of commands to reprogram the FPGA and embedded
processors.

The support files are encoded with the physical flash
address location of the new FPGA and embedded processor
configuration files along with other parameters needed to
perform a reconfiguration.

- RT_Config: contains addresses for new Flash
Image Table, new top and bottom FPGA files

- Flash_Image_Table: points to new boot scripts
and new PowerPC SW

- PPC_SW_Boot_Script: points to a slot in the new
flash image table which points to the new PPC SW

- Compressed Primary PPC SW: contains updated
main app including the new C&DH. Its
uncompressed automatically during bootup

- Compressed experiment PPC SW: contains new
experiment source code that operates on the second
embedded PPC which is designated for
experiments. (This code is stored in flash but
loaded into BRAM by the main PPC app)

- Compressed FPGA configuration: a file
containing a FPGA bitsream that works on both the
bottom and top FPGA.

To decompress the new compressed FPGA configuration
file or other compressed support file, a special ground
command is used. The user populates the flash decompress
command with a source and destination flash address.
When the C&DH app receives the command from the
ground it calculates the file size, and verifies that the
compress file is not corrupt, then writes the uncompress data
to the new flash location. Last, it reports the outcome of
the decompression in its telemetry.

Below is the series of ground commands that are executed
to initiate a SpaceCube reconfiguration.

1. Decompress compressed FPGA configuration file and
save in a new flash memory location.

2. Read back first and last 512 bytes for crude verification
of successful decompression and flash write.

3. Command SpaceRISC application to utilize new RT
Config file located at a given flash address.

4. Command SpaceRISC to Reload RT Config file

5. Command SpaceRISC application to reconfigure FPGAs

The SpaceRISC app will use the new FPGA files that are
pointed to by the new RT_Config file. Once the FPGA is
configured, the embedded processor boot loader will ask the
SpaceRISC for the flash location for its software. The
SpaceRISC will provide the new flash addresses provided
by new Flash image table. This will result in the new
PowerPC software files to be loaded.

To accommodate and mitigate anomalies in the
reconfiguration process, only one FPGA per SpaceCube
system is reprogrammed at a time. If an anomaly occurs
preventing one FPGA from being reconfigured, the C&DH
app will continue to operate nominally on the other FPGA
allowing for the reconfiguration to be reverted to the ‘Gold’
configuration. A power cycle of the SpaceCube also results
in a reversion back to all ‘Gold’ configurations.

Operations—Primary MISSE-7 SpaceCube payload
operations are performed at GSFC. Operations are
conducted through MSFC’s Huntsville Operations Support
Center (HOSC), which manages the telemetry and
command links to ISS attached payloads.

Operations are conducted using two main application suites:
the HOSC’s Telescience Resource Kit (TREK) and GSFC’s
IECC. TReK serves as gateway to ISS’s payload data
stream and provides telemetry and command streams from
GSFC to the HOSC. The IECC sits on tops of TReK as an
advanced secondary payload telemetry and command
processor. The IECC is built on GSFC’s Instrument Remote

 12

Control (IRC) framework. The IECC has the following
features:

- User generated custom displays via XML

- Client/Server capabilities supports end users

- Interactive and automated commanding

- Real-time event detection and geolocation

- Interactive event mapping and IRC plug-in

- scripting for real-time complex telemetry
processing

The IECC displays real-time Health and status telemetry,
plotting critical temperatures. It has a feature that monitors
SEU telemetry which autonomously time stamps and
geotags the SEU events.

The SpaceCube on the MISSE-7 payload is shown in Figure
18.

Figure 18 - SpaceCube/MISSE-7 Installation on ISS

Results—The MISSE-7 SpaceCube payload has been
continuously operating for four years at the time of this
paper’s submission.

We have had only one anomaly on 12/9/12 at 4:59pm EST
that required power cycling the payload. In this instance,
one of the two SpaceCube experiments appeared to have
stopped sending data and was not recoverable through reset
and reconfigure commands. Nominal operations were
resumed after the power cycle. There is not enough data to
determine if the CIB was involved or if it was solely a
SpaceCube problem. No further issues have been observed.

We have not experienced a processor reset as a result of a
watchdog timeout. Our data shows that the PowerPC

processors have been up and running for more than
99.999% of the time. Further data analysis is needed to
confirm 100%.

The overall average SEU rate that we have collected on the
four FPGAs is 0.09 SEU/Day/FPGA. A 10-month sample
of where SEUs have occurred are geotagged and depicted in
Figure 19. Each color represents one of the four FPGAs.

Figure 19 - MISSE-7 SpaceCube SEU Map

We have noticed a few scrubber runaway occurrences. The
SEU count for a single FPGA starts incrementing at a fast
rate. It will last for a period of hours to days. We have not
noticed any adverse effects to the underlying applications
running.

Updated SEE results will be presented at the conference.

The MISSE7 SpaceCube was an essential part to making
MISSE7 a success. The SpaceCube was considered the
most reliable experiment and thus was utilized as an
indicator to the health of the misse7 payload. During
integration testing the SpaceCube also uncovered an
anomaly with the CIB that helped characterize operational
performance.

The MISSE7 SpaceCube system continues to be a
successful and valuable payload because it is a prime
showcase of the reliability, flexibility and high-performance
of SpaceCube technology. The SpaceCube team was
involved in the full life cycle of this payload, from
requirement writing, to hardware design, hardware
assembly, software development, environmental testing,
integration, and post launch operations. This payload has
provided significant lessons learned that have laid a strong
foundation for all work that followed it.

Development Effort—The development cycle for the
MISSE-7 box was drastically less than that of the RNS box.
This is mainly due to minimal NRE required to build the
hardware. The only new piece of hardware was the
communication and power adapter slice. This phase of the
development took 9 months and required the equivalent of
approximately 3.5 people/year, or 3 man-years. The

 13

application development phase took 1 year and required the
equivalent of approximately 5 people/year, or 5 man-years.
After payload delivery (2/2009), one FPGA and three
software updates were made to fix issues that were found
during payload testing and to add enhanced features. This
system was on a very short delivery schedule in order to
meet payload integration milestones. Being that SpaceCube
is reconfigurable, it allowed us to meet the delivery deadline
by delivering the system with all essential functions, but to
continue development for later upgrades.

C. DPP/Argon

The Satellite Servicing Capabilities Office (SSCO) at GSFC
began efforts in 2009 to improve the agency’s capability to
robotically service satellites in space. Two simultaneous
flight projects were spawned from this effort (1) Robotic
Refueling Mission (RRM) and (2) Dextre Pointing Package
(DPP). RRM was launched to ISS in 2011 and has been
completely successful in demonstrating the capability to
tele-operate tools in space to do robotic servicing tasks such
as gas fitting removal, refueling, screw removal, and
thermal blanket manipulation [20]. DPP was a more
advanced follow-on mission to RRM that would
demonstrate passive and active relative navigation sensing
by autonomously controlling the ISS Dextre robot to point
to and track vehicles within proximity [17]. Due to budget
constraints, the SSCO had to downgrade DPP to a AR&D
ground demonstration called Argon. Argon integrates
essential AR&D components and unique algorithms into a
system that autonomously images, visually captures and
tracks dynamic and static target [19].

The Argon system show in Figure 21 consists of two RNS
cameras, a star tracker, a Visual Navigation System (VNS),
an Inertial Measurement Unit (IMU), an Infrared camera, a
wireless Ethernet module, Power Control Unit (PCU), a
suite of situational awareness cameras, and the SpaceCube
as the payload avionics and onboard processor. 1553,
Ethernet, and wireless 802.11 Ethernet are the main
communication channels. The main objectives were to
demonstrate a robotic AR&D system that couples the
functionality of a collection of cameras, sensors, computers,
algorithms, and avionics to independently track an
uncontrolled target at different ranges. Once the AR&D
system has locked onto the target, Argon will safely guide
the robot through precise rendezvous and docking
maneuvers [19].

SpaceCube Hardware Changes—A few modifications were
necessary to support the increased requirements of the
Argon system. A new Video Compression Module (VCM)
slice for the SpaceCube was built to handle the new
interface requirements of the situational awareness cameras
(NTSC). The VCM is Xilinx-based, which was a huge
upgrade in reconfigurability and functional potential
compared to the Actel-based VIM slice on RNS. New DCC
boards were made to fix timing parameters within the
Ethernet circuit to guarantee functionality with ELC.
Finally, both processor card front-panel connector

configurations were changed to increase the amount of I/O
available. This required new processor housings.

Figure 20 - Argon Assembly, SpaceCube Lower Right

FPGA Design and Application Description—The
SpaceCube applications heavily leveraged the RNS work as
a starting point. The FPGA designs were adapted to
accommodate the added Argon requirements. The AGC and
GNFIR algorithms were improved from RNS. Two
additional AR&D algorithms with supporting FPGA
hardware accelerator cores were added, Goddard FlashPose
and JSC Cooperative 3D Pose. The SpaceCube 1553 and
Ethernet interfaces also required development and test to
obtain reliable operation.

Figure 21 - Argon SpaceCube Diagram

Argon required a significant amount more processing power
than on RNS. As a result, all 8 PowerPCs were utilized
running the SpaceCube Linux OS. A custom software bus
was implemented that utilized the LVDM transceivers to

 14

communicate between cards via the internal stacking
connector. During application development, Ethernet was
used for quickly loading new FPGA configuration and
software files to flash storage via the internal PowerPC bus
architecture. For the four FPGAs, slice utilization ranged
from 80-95% and BRAM utilization ranged from 60-90%.
This configuration of the SpaceCube requires 43W of
power.

Testing—Static and dynamic system testing with Argon
occurred at GSFC’s Satellite Servicing Center, the Naval

Research Laboratory (NRL), and at Lockheed’s Space
Systems facility in Denver. Argon was successful in
demonstrating its stated objectives with a flight-ready
system. Figure 22 shows a picture of open- and closed-loop
system testing of Argon. The Argon package is attached to
the blue Fanuc robot arm on the far left. Argon tracks the
motion of a non-cooperative, tumbling satellite, which is the
gold mockup mounted on a motion-based Rotopod platform
on the far right [18-19].

Figure 22 - Argon Testing at the GSFC Robotic Satellite Servicing Center

Development Effort—The hardware required some NRE to
build new DCCs, a new VCM card, and slightly modify the
processor card connectors. This phase of the development
was programmatically slow, taking 18 months and required
the equivalent of approximately 4 people/year, or 6 man-
years. The application development phase was more
involved to accommodate the additional interface
requirements and demonstration objectives. It took 2 years
and required the equivalent of approximately 9 people/year,
or 18 man-years. The Argon system development was very
dynamic as the internal architecture was in constant flux.
The SpaceCube system was heavily leveraged for its ability
to adapt to the changing requirements by reconfiguration of
the FPGAs and software.

D. SpaceCube CIB on STP-H4

The DoD Space Test Program (STP), managed by the Air
Force, was responsible for the payload processing of

MISSE-7. They were impressed by the reliability and
capability of the MISSE-7 SpaceCube during system
integration testing and by its on-orbit performance. STP
requested that Goddard deliver a SpaceCube v1.0 system to
replace the legacy CIB system from MISSE-7 for a new ISS
payload called STP Houston-4, or STP-H4. The SpaceCube
CIB (SC_CIB) gives the STP-H4 payload the ability to offer
experiments higher bandwidth data connections since
SpaceCube supports an Ethernet interface compatible with
the ISS High Rate Data Link (HRDL) via ELC avionics.
STP-H4 is installed on ELC-1. The STP-H4 payload pallet
is shown in Figure 23. The SpaceCube CIB is seen on the
bottom right.

For STP-H4, SpaceCube CIB supports six experiments via
RS422 interfaces. One of the experiments is called ISS
SpaceCube Experiment 2.0 (ISE 2.0), which is a GSFC
experimental payload based on an Engineering Model of the
SpaceCube v2.0 processing system [23].

 15

Figure 23 - STP-H4 System Integration

SpaceCube Hardware Description—The SpaceCube CIB is
a base system, which as described in section 3 is one
processor slice and one power slice [8]. The hardware used
for the SC_CIB is a true reflight of one of the processor and
LVPC cards from the RNS SpaceCube flight box that flew
on Shuttle Atlantis. The DCC board was taken from the
flight box developed for the DPP/Argon campaign. A new
DCC board was needed to support the Ethernet interface
required on STP-H4. The SpaceCube CIB draws 15W of
power.

FPGA/Software Application Description—The main
objective of the SC_CIB application is to provide a C&DH
application between ELC and the payload experiments. A
custom C&DH application for the PowerPC was developed
for STP-H4. This application validates and forwards
commands to the appropriate payload. The C&DH
application schedules high rate telemetry (HRT) and low
rate telemetry (LRT) requests from all payloads in addition
to the CIB itself. The main interface is 1553, which is used
for commanding, LRT, and health and status data. The
SC_CIB collects health and safety data every second from
all attached payloads and its own internal registers such as
temperatures, voltages, command and telemetry packet
counter, etc., to aid in the operations of the payload. The
HRT is sent to the Ethernet interface which operates at a
maximum theoretical bandwidth of 10Mbps. The high level
interfaces of the SpaceCube CIB are depicted in Figure 24.

The SC_CIB FPGA design leveraged heritage cores and
overall embedded architecture from prior missions, which
was crucial in allowing for a fast application development
cycle required to meeting the ambitious delivery schedule.
The interrupt controller, USART, and scrubber cores are
from RNS. The SDRAM DECTED EDAC core is from
MISSE-7. The 1553, Ethernet MAC, and Ethernet PHY
cores are from Argon. Likewise for software, design
heritage was a key component in signing up for the fast

delivery schedule. The Linux OS framework from RNS
was used with all supporting FPGA core drivers. The
SpaceRISC updates from MISSE-7 were incorporated to
enable on-orbit reconfiguration of the FPGA. The C&DH
application incorporates the flash file support and
compression/decompression software from MISSE-7 that is
also required to support on-orbit FPGA reconfiguration and
software updates. The 1553 and Ethernet drivers were used
from Argon.

Two new FPGA cores with supporting software drivers
were developed to meet the CIB requirements. The
TimeCore keeps an internal system time that is
synchronized with the ISS broadcast time at a rate of 1Hz.
This timestamp is included in all data packets sent to the
attached payloads. The Time core is accurate to 1 byte of
fine time, which is approximately 4ms.

The second core that was developed for CIB is the Payload
Interface Core that is used to communicate with each
attached payload via RS422. It validates incoming packets,
searches for the sync header, validates header fields, and
checks for a valid CRC. It strips out payload data and
presents packet statistics to the C&DH software via a series
of flags. It also generates all packets transmitted to the
payloads. The software writes the desired packet type to a
register and if it’s a command it puts the command payload
into a FIFO. The core then generates the packet header, fills
in the payload data from the FIFO, and appends the
calculated CRC. The core also manages payload response
timeouts, by setting timers after packet transmissions and
notifies software if the timer expired before a valid response
was received. This core utilizes the TimeCore to timestamp
all the packets sent to the payloads. It latches the time as it
creates the packet to reducing latency to only the packet
transmit time. At a high level it abstracts the payload
interface to the software as a series of flags and payload data
in FIFOs. This reduces the load on the software, allowing

 16

the system to quickly collect and transmit the data to the
ISS.

Only one FPGA and one PowerPC were used to implement
the CIB requirements. The FPGA design utilized
approximately 40% logic and 30% BRAM resources. To
avoid the accumulation of SEUs that could cause potential
issues, a design that only contains the configuration
scrubber is implemented on the second FPGA.

CIB Testing and Integration—The SpaceCube CIB went
through environmental testing at GSFC prior to delivery to
STP-H4 in Houston, TX. GSFC continued to support the
system level tests and integration. A 1553 Remote Terminal
address bug was uncovered during 1553 validation testing.
The software patch to fix the bug was tested at GSFC and
the SpaceCube CIB in Houston reprogrammed within 48
hours of discovering the issue. A second software patch
was later performed to improve overall functionality as a
result of ongoing testing at GSFC.

Following flawless system integration in Houston, the
payload was sent to KSC. A risk reduction payload test was
performed that included validating communication with the
ELC Ethernet interface. After correcting a minor issue in
the harness, the SpaceCube CIB successfully streamed 1.2
GB of data at an effective rate of 1.5Mbps. Environmental
testing on the system and final end-to-end tests occurred
prior to shipment to Japan for launch vehicle integration.

The FPGA design was locked after environmental testing at
GSFC and never required an update post-delivery. The
option to reconfigure the FPGA on-orbit exists if necessary.

Operations—The STP-H4 payload was launched to ISS on
the JAXA HTV-4 vehicle in August 2013. The payload was
activated shortly after arrival. The SpaceCube CIB’s
telemetry is being monitored with the IECC and it has been
operating nominally. All temperatures, voltages, and
statuses are as expected. All attached payload’s telemetry
and commands are being transmitted without error.

The GSFC IECC has the capability to command and
monitor the STP-H4 payload. The SC_CIB has successfully
been sent commands to reset status and its internal counters.

SEE results will be compared to those of the MISSE-7
SpaceCube, and presented at the conference.

Development Effort—The agreement with STP-H4 put the
SpaceCube CIB on a strict 12 month delivery schedule. The
hardware did not require any NRE. Thus, the hardware
build phase of the development was fast. It only took 11
months to build, test, and deliver the hardware. This phase
required the equivalent of approximately 3 people/year,
which is roughly 3 man-years. The application development
phase required more people to implement the CIB-specific
FPGA and software requirements. It took 12 months and
required the equivalent of approximately 5 people/year, or 5
man-years. After delivery, the STP-H4 system integration
required 2 people for 6 months, which increases the total
application effort to 6 man-years. The hardware reuse,
FPGA/software design heritage, and reconfigurable options
of the SpaceCube allowed us to confidently deliver a
product within the aggressive schedule requirement. The
reconfigurability of the system was utilized after delivery to
fix issues found during payload integration.

Figure 24 - SpaceCube CIB System Diagram

 17

5. CONCLUSIONS
SpaceCube fits the need for a hybrid computing architecture
for space. We have demonstrated reliable use in three
separate missions including over four years of operation on
the MISSE-7 payload. The computing power of the
SpaceCube system provides at least a 10x performance
increase over traditional space processors. We have shown
how we have solved extreme data-intensive and
computation-intensive applications within RNS and Argon
by leveraging a multi-processing platform coupled with
reconfigurable FPGAs. Traditional space processing
systems cannot handle these advanced applications. The
SpaceCube hybrid processing system enables break-through
mission objectives such as AR&D and robotic servicing.

In addition, the SpaceCube is both reconfigurable and
modular. We have shown how we have used these traits to
quickly adapt to new missions and changing requirements.
Each mission, aside from the SC_CIB, required a mission
unique I/O card to meet requirements.

On the MISSE-7 SpaceCube, we have proven the ability to
reconfigure the system in space flight with new FPGA and
software design files sent from ground. The flexibility of
SpaceCube allowed for an ad-hoc collaborative effort to be
utilized in developing the new versions of software and
FPGA designs that were used to reprogram it in space.

Within this paper we have also highlighted the development
effort to build each of the systems in Section 4. This data is
summarized in Figure 25 and Figure 26. The hardware
NRE, FPGA NRE, and software NRE are significantly
reduced after the RNS mission. Each of the follow-on
missions only required engineering to build and test copies
of the hardware, develop mission unique I/O cards, and
integrate the new application requirements in FPGA and
software. This reduction in NRE has a great benefit to
program cost and schedule. The reuse and application of
SpaceCube to different mission profiles is only possible due
to its reconfigurability and modularity. As shown for the
SC_CIB mission, schedule risk was reduced due to heritage
design, hardware reuse, and the reconfigurable FPGAs and
software features of the SpaceCube. These combined
features are what enabled our confidence in delivering a
working system within 12 months.

Figure 25 - Development Duration per Mission

Figure 26 - Total Development Effort per Mission

The reduction of initial design NRE cost, the flexibility of
the hybrid architecture, and the inherent low power and
weight of the SpaceCube system is what makes the
SpaceCube attractive to missions requiring an advanced
avionics package.

6. FUTURE WORK
GSFC is currently supporting two new programs that will
use a SpaceCube v1.0 system for on-board payload
processing. GSFC is delivering another SpaceCube CIB for
STP-H5, which is a follow-on project to STP-H4. The
hardware will be identical to STP-H4, but will require some
software modifications to support new experiments,
including file transfer. Also, SSCO will use a SpaceCube
v1.0 system to control the third phase of RRM. The RRM-3
SpaceCube will require an I/O card to handle analog
monitoring and control of the payload systems, and will also
require an added Ethernet interface to communicate with the
ISS wireless 802.11 network.

REFERENCES
[1] T. Flatley, “SpaceCube: A Family of Reconfigurable

Hybrid On-Board Science Data Processors,” presented at
the NASA/ESA Conference on Adaptive Hardware and
Systems, Nuremberg, Germany, June 2012.

[2] “Space Communications and Navigation.” NASA
Goddard Space Flight Center FY 2006 Internal
Research and Development Program, R&D
Achievements.” [On-line]. pp. 8. Available:
http://gsfctechnology.gsfc.nasa.gov/2006_AR_V6_FIN
AL_low.pdf [Aug. 8, 2013].

[3] “SpaceCube.” Goddard Tech Transfer News. Spring
2009. [On-line]. 7(1), pp. 3.
http://techtransfer.gsfc.nasa.gov/newsletter/springHST_0
9.htm [Aug. 8, 2013].

[4] B. Naasz, J. Van Eepoel, S. Queen, C. Southward, J.
Hannah, “Flight Results of the HST SM4 Relative
Navigation Sensor System,” AAS Guidance and Control
Conference, No. AAS 10-086, Breckenridge, CO, 2010.

 18

[5] D. Espinosa, A. Geist, D. Petrick, T. Flatley, J. Hosler,
G. Crum, M. Buenfil, “Radiation-Hardened Processing
System,”, U.S. Patent 8,484,590, issued July 9, 2013.

[6] D. Petrick, “NASA Shoots SpaceCube Technology into
Orbit,” Xilinx Xcell Journal Customer Innovation Issue,
pg. 27, 2010.

[7] “4 Row Uninterrupted Receptacle, Stacking.” HMM
Series Data Sheet. Internet:
http://www.iehcorp.com/products/1/, [Aug. 8, 2013].

[8] D. Espinosa, J. Hosler “Goddard Space Flight Center
Attached Payload System,” presented at the Military and
Aerospace Programmable Logics Devices Conference,
2013.

[9] D. Petrick, “Application of SpaceCube in a Space Flight
System,” presented at the Military and Aerospace
Programmable Logics Devices Conference, 2009.

[10] M. Berg, C. Poivey, D. Petrick, and K. LaBel et al.,
“Risk Reduction for Use of Complex Devices in Space
Projects,” IEEE Transactions on Nuclear Science, vol.
54, no. 6, pp. 2137-2140, Dec. 2007.

[11] C. Poivey, M. Berg, M Friendlich, H. Kim, D. Petrick,
S. Stansberry, K. LaBel, “Single Event Effects Response
of Embedded PowerPCs in a Xilinx Virtex-4 FPGA for a
Space Application,” European Conference on RADECS,
Sept. 2007.

[12] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea,
and K. LaBel et al., “Effectiveness of Internal Versus
External SEU Scrubbing Mitigation Strategies in a Xilinx
FPGA: Design, Test, and Analysis,” IEEE Transactions
on Nuclear Science, vol. 55, no. 4, pp. 2259-2266, Aug.
2008.

[13] H. Quinn, P. Graham, et al., “On-Orbit Results for the
Xilinx Virtex-4 FPGA,” Radiation Effects Data
Workshop, IEEE, Tucson, AZ, 2012.

 [14] G. Allen, G. Swift, and C. Carmichael, “Virtex-4VQ
static SEU characterization summary,” Xilinx Radiation
Test Consortium, Tech. Rep. 1, 2008.

[15] G. Allen, “Virtex-4VQ Dynamic and Mitigated Single
Event Upset Characterization Summary,” Xilinx
Radiation Test Consortium, JPL Publication 09-4 01/09,
2009.

[16] “Materials International Space Station Experiment – 7.”
Internet:
http://www.nasa.gov/mission_pages/station/research/expe
riments/653.html, Apr. 26, 2013 [Aug. 8, 2013].

[17] B. Naasz, M. Strube, J. Van Eepeol, B. Barbee, K.
Getzandanner, “Satellite Servicing’s Autonomous
Rendezvous and Docking Testbed on the International

Space Station,” AAS Guidance and Control Conference,
No. AAS 11-072, Breckenridge, CO, 2011.

[18] B. Naasz and M. Moreau, “Autonomous RPOD
Challenges for the Coming Decade,” AAS Guidance and
Control Conference, No. AAS 12-065, Breckenridge,
CO, 2012.

[19] “Argon,” [On-line].
http://ssco.gsfc.nasa.gov/argon.html [Aug. 22, 2013].

[20] “Robotic Refueling Mission,” [On-line].
http://ssco.gsfc.nasa.gov/robotic_refueling_mission.html
[Aug. 22, 2013].

[21] T. Gulliver and V. Bhargava, “A Systematic (16,8)
Code for Correcting Double Errors and Detecting Triple-
Adjacent Errors,” IEEE Transactions on Computers, vol.
42, no. 1, pp. 109-112, 1993.

[22] P. Jenkins et al., “MISSE-7: Building a Permanent
Environmental Testbed for the International
Space Station,” Proceedings of the 9th International
Space Conference Protection of Materials and Structures
From Space Environment, Toronto, Canada, 19-23 May
2008.

[23] “Space Test Program-Houston 4-ISS SpaceCube
Experiment 2.0 (STP-H4-ISE 2.0),” Internet:
http://www.nasa.gov/mission_pages/station/research/exp
eriments/487.html, May 23, 2013 [Aug. 8, 2013].

[24] “Virtex-4 Family Overview”, [On-line].
http://www.xilinx.com/support/documentation/data_shee
ts/ds112.pdf, DS112 (v3.1), [Aug. 30, 2010].

BIOGRAPHY
David Petrick started his career
at NASA in 2000. He has a wide
range of experience building
Xilinx FPGA-based systems for
space flight including FPGA
design, radiation mitigation
testing, PCB design,
reconfigurable system design,
and mission operations. He was
the lead design engineer on the

SpaceCube v1.0 and v2.0 processor cards including
embedded systems framework, FPGA core development,
and electrical design, responsible engineer for the RNS
SpaceCube system build, delivery, and shuttle payload
operations, lead engineer for the MISSE-7 and ISE2.0
SpaceCube hardware deliveries, and systems lead on the
SpaceCube v2.0 development effort. He is currently the
Embedded Processing group leader within the Science
Data Processing Branch and SpaceCube Program
Technical Development Lead. He has a BSEE from the
University of Pittsburgh and a MSEE from the Johns
Hopkins University.

 19

Daniel Espinosa started his
career at NASA in 2003. He
serves in the Science Data
Processing Branch and is a key
member of the SpaceCube
Program. He has a BS in
Computer Engineering and a MS
in Electrical Engineering from
the University of Florida. Dan’s
area of expertise is in Field

Programmable Gate Arrays based reconfigurable high-
performance embedded space systems. He has extensive
experience with the ISS payload data interfaces and ISS
payload operations. Dan has various experiences in the
full life cycle of space flight including: requirement
formulation, application and FPGA development,
environmental testing, system integration, GSE design
and mission operations. Dan was the lead developer for
the SpaceCube MISSE-7 ISS payload and is currently the
payload manager and lead operator. Dan is the
SpaceCube CIB system lead for the STP-H4 ISS payload
and planned STP-H5. Dan is also the avionics lead for
the Robotic Refueling Mission phase 3.

Robin Ripley started working for
NASA as a contractor for Orbital
Sciences Corporation in 2005,
then joined NASA as a full-time
employee in 2008. She has
experience working with both
Actel and Xilinix FPGAs . She
has worked on SpaceCube for
various projects including RNS,
CIB, DPP, and Restore doing

design and testing at the FPGA and board levels, and
integration and testing at the box and system levels. Her
BSEE is from Virginia Polytechnic Institute and State
University and her MSEE is from Johns Hopkins
University.

Gary Crum received his B.S in
Computer Engineering from
Michigan State University. Mr.
Crum began working with NASA
in 2004 as part of a Senior
Capstone Design Project which
enabled him to secure an
internship working on sensor
fusion for robotic path planning
and object avoidance. Mr. Crum

then worked as a NASA contractor for Jackson and Tull
where he lead the development work on the SpaceCube
v1.0 Aeroflex System on a Chip and then transitioned to
a NASA civil servant in 2008. Mr. Crum specializes in
both embedded hardware and embedded software and is
responsible for creating advanced SoC designs, IP
Core’s, device drivers, bootloaders and Flight Software.
Mr. Crum has played a key role in all of the SpaceCube
related missions. Mr. Crum is currently finishing his

M.S. in Electrical and Computer Engineering with a
concentration in Robotics at John Hopkins University.

Alessandro Geist received
his B.S. in Computer
Engineering from Johns
Hopkins University and his
M.S. in Electrical
Engineering from the
University of Maryland,
College Park. He has worked
at NASA GSFC in the Science
Data Processing Branch

since 2006. He has had significant experience
implementing and accelerating on-board processing
algorithms in FPGAs on a variety of missions
including DBSAR, URAD, GNFIR/RNS, MISSE-7, and
other internal research and development efforts. He
has also been extensively involved in flight processor
card design including being the lead design engineer
of the SpaceCube 1.5 and co-lead design engineer of
the SpaceCube Mini processor systems. In addition,
he was the FPGA development lead on ISE 2.0 and the
avionics lead engineer on the SMART sounding rocket
mission. He is currently developing much of the
FPGA infrastructure for the SpaceCube 2.0 processor
system, and is also the experiment lead for ISEM on
STP-H5.

Tom Flatley is currently Branch
Head of the Science Data
Processing Branch at the NASA
Goddard Space Flight Center.
Prior to this assignment he
served as Branch Head and
senior researcher in the Science
Data Systems Branch (2005-
2007), and Chief Technologist
and Acting Associate Head of the

Microelectronics & Signal Processing Branch and
Electrical Systems Branch (2003-2004). From 1998-
2002 he served as Chief Technologist and Associate Head
of the Ground Systems Hardware Branch, and from 1993-
1997 he served as head of the Flight Electrical Systems
Section and Flight Component Development Group.
Prior to this period he developed numerous flight and
ground components and subsystems for various NASA
missions, beginning in 1985. Mr. Flatley's current work
includes the coordination of embedded science data
processing technology development and hardware
accelerated science data processing activities, serving as
Principal Investigator on multiple flight processing
experiments, with the primary goal of developing re-
configurable computing technology and hybrid systems
for flight and ground science data processing
applications. He is also a key member of the GSFC
CubeSat/SmallSat technology working group, manages
numerous collaborations with government, industry and
academic partners, and serves as liaison between

 20

technology developers and end users in the science
community. Mr. Flatley received a 2011 NASA
“Exceptional Engineering Achievement Medal” and the
2012 American Astronautical Society “William Randolph
Lovelace II Award” for advancing spaceflight and space
exploration technology through the development of
SpaceCube.

