National Aeronautics and Space Administration

Adapting the Reconfigurable SpaceCube Processing System for Multiple Mission Applications

2014 IEEE Aerospace Conference

Track 7.05: Reconfigurable Computing Systems Technologies

Dave Petrick Embedded Systems Group Leader

SpaceCube, Target Applications

- Small, light-weight, reconfigurable multi-processor platform for space flight applications demanding extreme processing capabilities
 - Reconfigurable Components: FPGA, Software, Mechanical
 - Promote reuse between applications
- Hybrid Flight Computing: hardware acceleration of algorithms to enable onboard data processing and increased mission capabilities

Hardware Algorithm Acceleration

Application	Xilinx Device	Acceleration vs CPU
SAR	Virtex-4	79x vs PowerPC 405
Altimeter	FX60	(250MHz, 300 MIPS)
RNS GNFIR	Virtex-4	25x vs PowerPC 405
FPU, Edge	FX60	(250MHz, 300 MIPS)
HHT	Virtex-1	3x vs Xeon Dual-Core
EMD, Spline	2000	(2.4GHz, 3000 MIPS)
Hyperspectral Data	Virtex-1	2x vs Xeon Dual-Core
Compression	1000	(2.4GHz, 3000 MIPS)
GOES-8 GndSys	Virtex-1	6x vs Xeon Dual-Core
Sun correction	300E	(2.4GHz, 3000 MIPS)

<u>Notes</u>:

- 1) All functions involve processing large data sets (1MB+)
- 2) All timing includes moving data to/from FPGA
- 3) SpaceCube 2.0 is 4x to 20x more capable than these earlier systems

On-Board Data Reduction

SpaceCube Family Overview

High Performance Space Processing

- Challenge
 - Need order of magnitude performance improvement over traditional space processors
 - Unlock mission enabling technology
 - Keep size and power under control
- Approach
 - Rad-Hard processor will not work, generations behind, large
 - Science data doesn't have to be perfect 100% of the time
 - MIPS/Watt metric
- Our Solution
 - Hybrid processing using FPGA, CPU, DSP computing nodes
 - Hardware accelerated computing
 - System monitor, critical controller

SpaceCube: a high performance reconfigurable science data processor based on Xilinx Virtex FPGAs

SpaceCube v1.0 System

Base Unit Size: 4.5" x 4.3" x 3" Operating Range: -30C to +55C Power: 12-16W SCIENCE DATA PROCESSING BRANCH • Code 587 • NASA GSFC

Processor Slice, Back-to-Back Architecture

FPGAs: 2x Xilinx V4FX60, 2x Aeroflex UT6325 Memory: 1GB SDRAM, 1GB NAND Flash, PROM/SRAM External I/O: 20ch LVDS/RS422

Power Slice, Two Cards

28V Input, 5V, 3.3V, 2.5V, 1.5V, +/-12V Outputs External I/O: 1553, 10Base-T Ethernet, 4ch RS422

Mechanical Slice Stacking Architecture

SpaceCube v1.0 Missions

Year	Mission	Application
5/2009	Relative Navigation Sensors STS-125	Real-time image processing/tracking, data compression, shuttle interface
11/2009-Present	MISSE7/8	Radiation Experiment
2010-2011	Argon Robotic Ground Demo	Similar to RNS with additional instruments, upgraded algorithms
8/2013-Present	STP-H4, DoD Delivery	Payload Control, ISS Interface
2015	STP-H5, DoD Delivery	Payload Control, ISS Interface
FPGA High-Level Design Example, RNS		
FPU FCB PowerPC OPB INTC ULTOR Debug Aeroflex UART UART USRT PLB GNFIR Camera Core GNFIR Edge Core BRAM SDRAM		Leveraged Mechanical, Electrical, FPGA Design, and Flight Software on each subsequent project
		Reconfigurable System = Reduced \$\$ and Schedule

RNS Payload on HST-SM4, STS-125

STS-125 Payload Bay

RNS System: 28 FPGAs

Long Range Camera on Rendezvous

Short Range Camera on Deploy

GNFIR POSE ESTIMATE GMT: 133:16:28:43.757 rame ID: 0x73F13002 uaternion: 0.72654, -0.67387, 0.03428, 0.12983 osition (meters): 1.4498, 7.8250, -81.4431 ose Quality Confidence: 88.235%

Flight Image XILINX XILINX ACTEL

RNS Tracking Solution

660 0 27127 0.65614 -0.27891

Flight Image

RNS Tracking Solution

Compressed Image from HST Release

NASA GSFC SCIENCE DATA

On-Board Image Processing

→ Successfully tracked Hubble position and orientation in real-time operations
→ FPGA algorithm acceleration was required to meet 3Hz loop requirement

Rendezvous

Deploy

MISSE7/8 SpaceCube

SCIENCE DATA ESSING **BRANCH** • Code 587 • NASA GSFC P R O С

0

SpaceCube Upset Mitigation

Data as of 3/1/2014

Days in orbit Total SEUs detected & corrected Total SEU-induced resets Total SEU-induced reset downtime Total processor availability 1500+ 200+ 6 30 min 99.9979% GSFC SpaceCube v1.0 (Nov 2009):

- "Radiation Hardened by Software" Experiment (RHBS)
- Autonomous Landing Application
- Collaboration with NRL and the DoD Space Test Program (STP)

Argon AR&D Test Payload

Argon Payload Assembly

SpaceCube

- \rightarrow Embedded system consisted of 8 PowerPC405s
- → Reconfigurable system to support various instrument payloads

GSFC Satellite Servicing Lab

Testing with simulated 6-DOF motion of Argon and Target

- Rotopod and FANUC motion platforms simulate target-sensor dynamics
- Up to 13 m separation possible

Testing conducted at GSFC in January-February 2012

- Motion includes closed-loop approach and non-cooperative "tumble"
- Open loop testing to characterize sensor/algorithm performance
- Closed-loop tests evaluate end-to-end system (sensors, algorithms, control law) in real time

SpaceCube CIB, STP-H4

 Delivery to Space Test Program \rightarrow Reflight of RNS Hardware Interfaces with ELC and 8 attached payloads SpaceCube Payload Attached ISS RS422 or LVDS Channel 1 CIB Payload 1 **ExPRESS** logistics Payload Attached RS422 or LVDS carrier Channel 2 Payload 2 (ELC) Payload Attached RS422 or LVDS Channel 3 Payload 3 Commands, Low 1553 1553 Rate Telem, Health & Status Payload Attached RS422 or LVDS Channel 4 Payload 4 Payload Attached Ethernet Ethernet **High Rate Telem** RS422 or LVDS Channel 5 Payload 5 10BASE-T (6 Mbps MAX) 10BASE-T Payload Attached RS422 or LVDS Payload 6 **Channel 6** SPACECUBE CH BEFCI ASSY Payload Attached RS422 or LVDS **Channel 7** Payload 7 XX WiFi ISS 802.11n Payload Medium Rate Data Attached US Lab (Future Link~30 Mbps RS422 or LVDS Channel 8 Payload 8 Node Capability)

> Days in orbit Total SEUs detected & corrected Total SEU-induced resets

200+ 20+ (as of 3/1/2014) 1

ISS SpaceCube Experiment 2.0

STP-H4 Operational on ISS

Next Up: STP-H5 and Robotic Refueling Mission 3 in 2015

System Reuse and Reconfiguration

Interface Card

Conclusions

→Designing a new system has significant non-recurring engineering cost
→Solid embedded system infrastructure and reconfigurable file structure is critical
→A reconfigurable and adaptable system enables low-cost, quick-turn missions
→A scalable mechanical/electrical system can easily adapt to new interface requirements
→Reconfigurable system enables accelerated requirements creep