

SpaceCube v2.0 Hybrid Data Processing System

Features

- Flexible flight data processing system
- In-flight reconfigurable
- 3U modular form factor, 4 slots
- Supports up to 6 defense-grade and/or space-grade Xilinx Virtex 5 FPGAs
- Suite of mission-unique interface cards
- Applicable to all mission classes

SpaceCube v2.0 Pictured with 1 Power Card, 2 Processor Cards, 1 Digital I/O Card

Description

SpaceCube is a cross-cutting, in-flight reconfigurable Field Programmable Gate Array (FPGA) based onboard hybrid data processing system developed at the NASA Goddard Space Flight Center. The goal of the SpaceCube program, which started in 2005, is to provide 10x to 100x improvements in on-board computing capability while lowering relative power consumption and cost. The SpaceCube v2.0 base system is comprised of a power card, processor card, backplane card, and chassis. Two additional slots are available for more processor cards or mission-unique interface cards, and the chassis is easily scalable to support larger configurations.

Applications

- Real-Time instrument processing
- Autonomous Operations / Robotic Servicing
- Mission-critical computing
- Real-time Event / Feature Detection
- Gigabit interfacing
- On-board classification
- Intelligent data compression
- Real-time situational awareness
- Data volume reduction
- Inter-platform collaboration
- High speed data routing
- Multi-processor computing
- Adaptive processing applications

Flight Heritage

- Restore-L Payload Control Computer (2021)
- Robotic Refueling Mission 3 (current)
- Raven AR&D Instrument (current)
- ISE 2.0 (2013-15)
- NavCube on STP-H6 (2019)
- 7 earlier version SpaceCube payloads totaling 12 years of operation

Specifications

Size	25 x 20 x 15 cm		
Weight	4.5 kg (base system)		
Power	< 20W (base system)		
Temp	-35C to +55C		
Standard	RS422, LVDS, SpaceWire,		
Interfaces	SerDes, LVCMOS/LVTTL,		
	10/100 Ethernet, JTAG		
FPGAs	XQR5VFX130-CN1752		
Supported	XC5VFX130T-FF1738 (contains 2 PowerPC 440)		
Radiation	TID > 50KRad (w/o shielding)		
	SEL immune, SEE tolerant		

Contact Information

Tom Flatley / Principal Investigator <u>thomas.p.flatley@nasa.gov</u> Dave Petrick / Principal Engineer <u>david.j.petrick@nasa.gov</u> Enidia Santiago-Arce / Partnerships Office <u>enidia.santiago-arce-1@nasa.gov</u> Website <u>https://spacecube.nasa.gov</u>

Processor Card Features

- 2x Xilinx Virtex 5 FPGAs, 8W/ea. allocation
- 1x system controller FPGA
- 4x 512MB DDR1
- 2x 4GB NAND Flash
- 1x 16MB SRAM with EDAC
- External Interfaces: 4x SerDes, 88 GPIO or 44 LVDS, 8x RS422 or LVDS
- Debug: 4x UART, 10/100 Ethernet, JTAG
- 16-ch Housekeeping A/D


Power Card Features

- 28V +/- 6V, triple redundant inputs
- Configurable in-rush limiter, default < 7A
- EMI filtering
- 5.0V: 80W 3.3V: 53W +/- 12V: 30W
- Power On Reset generation
- Power Loss Warning signal, default < 22.4V</p>
- Redundant input current sensors
- 4x Temperature monitors
- Supports doubling 5.0V or 3.3V power service
- Supports master/slave ganging of two cards

Catalogue of Interface Cards

- IPC 6012B Class 3/A
- Optional heat sink (if necessary)

- >1Mohm primary/secondary isolation
- Integrated heat sink

Card	Function	Power	Interfaces
Basic I/O Card	Configurable RS422/LVDS buffers,	< 3W	40x LVDS/422 inputs, 8x RS485
(Restore-L)	RS485 bus support		8x LVDS/422 outputs
Digital Card	Standard interfaces to ISS	< 4W	2x 10BASE-T Ethernet
(RRM3)	Wireless Ethernet interfacing		1553 A/B, 10x discrete outputs
	Discrete services		14x RS422/LVDS pairs
Analog Card	15-bit A/D conversion, up to 200KHz	< 4W	31x 4-Wire, 16x 2-wire sensors
(RRM3)	5KHz sample rate for 40 channels		28x analog inputs
GPS RF Card	Required card for NavCube	< 4W	2x SMA female
(NavCube)	Weak signal GPS receiver, L1/L2C		
Digitizer Card	1.524 GHz high-speed ADC, 12-bit	< 9W	2x ADC inputs
(Kodiak)	Required card for Kodiak Lidar		
Front End	Interface/Telemetry circuits	< 1W	2x RS485; PPS in/out
Interface Card	Required card for Kodiak Lidar		5V, +/-12V out
Laser Card	Fiber laser ranging assembly	< 20W	Laser/seed fiber optic
(Kodiak)	Required card for Kodiak Lidar		Laser status input, GSE
Waveform	2-channel D/A, 14-bit 160MSPS, 1553	< 12W	2x analog out, 1x clock in
Generator Card	Ideal for radar transmitter		1553, LVDS/422, discrete
Digital Receiver	4-channel A/D, 14-bit 160MSPS	< 12W	4x analog in, 1x clock in
Card	Ideal for digitizing reflected radar signals		8x LVDS/422