SpaceCube: Current Missions and Ongoing Platform Advancements

Dave Petrick
NASA/GSFC
Code 587

9/3/2009
GSFC SpaceCube

- Small, light-weight, reconfigurable multi-processor platform for space flight applications demanding extreme processing capabilities
- Stackable architecture
- Based on Xilinx Virtex 4 FX60 FPGAs, 2 per processor card
- **Successful flight demonstration on STS-125**

Processor Card

- 2 Xilinx FPGAs, 2 Aeroflex FPGAs
- 1GB SDRAM, 1GB Flash

Flight Box

- Mechanical: 7.5-lbs, 5”x5”x7”
- Power: 37W (STS-125 Application)
Current Tasks

• SpaceCube 1.0: RNS flight spare to ISS (Nov 09)
 – Platform for testing radiation mitigation techniques starting with Rad-Hard by Software (RHBS)
 – Collaborating with industry and universities

• SpaceCube 1.5: Sounding Rocket Avionics
 – DoD Operationally Responsive Space payload funding
 – Feature Xilinx Virtex 5 FX100 with gigabit interfaces

• SpaceCube 2.0: Increased performance over SC1.X
 – ESTO funding → Prototype FY10, Engineering Unit FY12
 – For missions requiring high data rates and/or onboard science data processing
MISSE-7 Overview

• Materials International Space Station Experiment
• Payload Lead: Naval Research Lab
• STS-129 Shuttle Atlantis, November 12, 2009
MISSE-7 SpaceCube

• Flight spare SpaceCube from HST SM4, STS-125
 – Re-engineered box for MISSE-7/ELC interface
 – Built adapter plate, custom harness, new software
 – Delivered box to NRL in 9 months!

• Test bed for radiation mitigation techniques
 – Start with “Radiation-Hardened by Software”

• Supports compressed file uploads

• Operations from a laptop
MISSE-7 SpaceCube

MISSE-7 Express Pallet Integration
MISSE-7 SpaceCube

MISSE-7 Express Pallet Ready to Fly
MISSE-7 SpaceCube Block Diagrams
MISSE-7 SpaceCube Block Diagrams

MISSE-7
Power
CMD/TLM

Power 1
Processor 1
New Comm/Power Adapter
New Interfaces
Processor 2
New Interfaces
Power 2
MISSE-7 SpaceCube Block Diagrams

Data In

Xilinx 1
- PPC
- CDH App
- RHBS App
- FPGA Cores

Xilinx 2
- PPC
- CDH App
- RHBS App
- FPGA Cores

Aeroflex
- 8-bit uP
- H/S App
- RHBS App
- FPGA Cores

Data Out

Processor Card
MISSE-7 SpaceCube Block Diagrams
MISSE-7 SpaceCube Future Work

• Enjoy the Space Shuttle launch!!

• Conduct ops and analyze radiation data
• Improve RHBS algorithms and incorporate OS
• Collaboration with industry partners and universities
• Upload improved FPGA/SW designs
SpaceCube 1.5 Overview

• SpaceCube 1.5 Processor Card
 – Collaboration with DoD Operationally Responsive Space (ORS)
 – COTS components
 • Targets small-scale, responsive
 • Short-duration suborbital, near-space, and orbital flights
 – Features inherited from SpaceCube 1.0
 • 4” x 4” Form-Factor
 • Stackable Architecture
 • Legacy flight interfaces (RS-422/LVDS)
 • Power card compatibility
 – Bridge to SpaceCube 2.0
 • Transition to Xilinx Virtex-5 FPGA / PowerPC 440
 • “Plug and Play” Gigabit interfaces (SATA, Ethernet)
 • High-speed DDR2 SDRAM memories
SpaceCube 1.5: Processor Card

- Gigabit Ethernet
- Gigabit Ethernet
- Xilinx Platform Flash XL
- Serial ATA
- Serial ATA
- 4Gbit Flash
- A/D Converter 1 MSPS
- A/D Converter 1 MSPS
- 12 x RS-422 TX
- Xilinx Virtex-5 FX100T
- 12 x RS-422 RX
- 2Gbit DDR2 SDRAM
- 2Gbit DDR2 SDRAM
- Accelerometer
SpaceCube 1.5: SMART/ORS

- **Small Rocket/Spacecraft Technologies (SMART)**
 - Joint program between NASA and ORS

- **Objectives**
 - Develop faster, leaner, and more efficient approach to space flight
 - Maturation of miniaturized avionics for small launch vehicles, flight safety, and spacecraft applications
 - Reconfigurable payload structure for accommodating various subsystems
 - Demonstration of technologies applicable to future rocket balloon flights

- **Series of sounding rocket flights**
 - **First launch: Summer 2010** on a Terrier Improved-Orion sounding rocket

- **Micro-satellite platform with SpaceCube 1.5 as payload avionics**
 - Ingest data from
 - RocketCam
 - 2 x GigE Industrial Cameras
 - Inertial Measurement Unit (IMU)
 - GPS
 - Sensors (pressure, thermal, acceleration)
 - Cameras validate interfaces and document flight and deployment of parachute
 - Record data telemetry on two commercial SATA Solid State Drives (SSD)
 - Downlink reduced telemetry through transponder (10Mb/s)
SpaceCube 1.5: Status & Future Work

• Challenges:
 – Small Form Factor requires careful device selection and constrains I/O resources
 – Finding SATA solution (chose SATA IP Core)

• Improvements:
 – Compact/Rugged gigabit connectors capable of meeting **ALL** SATA specifications

• Status:
 – Completing schematic phase, initiating layout phase
 – FPGA/Software implementation of key interfaces proceeding on development boards
SpaceCube 2.0 Overview

Flight Processor Comparison

<table>
<thead>
<tr>
<th></th>
<th>MIPS</th>
<th>Cost</th>
<th>Power</th>
<th>MIPS/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-STD-1750A</td>
<td>3</td>
<td>-</td>
<td>15W</td>
<td>0.2</td>
</tr>
<tr>
<td>RAD6000</td>
<td>35</td>
<td>$250K</td>
<td>10-20W</td>
<td>2.33^1</td>
</tr>
<tr>
<td>RAD750</td>
<td>< 500</td>
<td>$200K</td>
<td>10-20W</td>
<td>30^2</td>
</tr>
<tr>
<td>SpaceCube 1.0</td>
<td>3000</td>
<td>$60K</td>
<td>5-15W</td>
<td>400^3</td>
</tr>
<tr>
<td>SpaceCube 2.0</td>
<td>5000</td>
<td>$75K</td>
<td>10-20W</td>
<td>500^4</td>
</tr>
</tbody>
</table>

Notes:
1 – typical, 35 MIPS at 15 watts
2 – typical, 450 MIPS at 15 watts
3 – 3000 MIPS at 7.5 watts (measured)
4 – 5000 MIPS at 10 watts (calculated)
SpaceCube 2.0 Processor Interfaces

- cPCI
- SATA
- Multi-Gbps Transceivers
- PCIe/x8
- I2C/CAN/GPIO
- LVDS/SpaceWire
- Ethernet
- Multi-Gbps Transceivers
- JTAG/Serial Debug

SpaceCube 2.0 Processor Components:
- LEON 3FT
- SIRF Virtex 5 FX130T
- 2.0 GB FLASH
- 2.0 GB RAM
- SIRF Virtex 5 FX130T

MAPLD 2009 - Session E
SpaceCube 2.0 Development Paths

RNS Cube
- Lessons Learned
- Flight Heritage

ISS Cube
- Radiation Results
- Years of Ops

Rocket Cube
- Xilinx V5FX Design
- Gigabit Interfaces

SpaceCube 2.0 Processor
- Based on cPCI form factor
- LEON 3FT Rad-Hard Processor
- GBs of memory
- 4x 450-MHz PowerPC, 2x logic of SC1.0
- More I/O including gigabit capability
- Apprx 2-lbs, 10-W

Xilinx SIRF Chip
- SEE Immune Reconfigurable FPGA
- XRTC participation

Leveraging Other Work
- Instrument data processing
- Industry/Univ SC1.0 users

Main Goals:
- Retain processing power of SpaceCube 1.0
- Add gigabit interfaces
- Improving overall reliability
SpaceCube On-Board Data Processing

On-Board HyperSpectral Data Processing IRAD --- Left: California Wildfire Scene, Center: On-Board Wildfire Detection and Temperature Characterization, Right: On-Board Product Generation for Direct Downlink to Emergency Services Personnel
Acronyms

- CDH: Command and Data Handling
- ELC: Express Logistics Carrier
- ESTO: Earth Science Technology Office
- FPGA: Field Programmable Gate Array
- IRAD: Internal Research and Design
- ISS: International Space Station
- MISSE: Materials ISS Experiment
- NRL: Naval Research Laboratory
- ORS: Operationally Responsive Space
- OS: Operating System
- PCI: Peripheral Component Interconnect
- PPC: PowerPC
- RHBS: Radiation-Hardened By Software
- RNS: Relative Navigation Sensors
- SATA: Serial Advanced Technology Attachment
- SEE: Single Event Effect
- TMR: Triple Module Redundancy